Maxwell Equations

Gauss's law

Gauss's law describes the relationship between a static electric field and the electric charges that cause it: a static electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through any closed surface is proportional to the charge enclosed by the surface. This means that the net flux passing through a closed surface yields the total charge (including bound charge due to polarization of material) enclosed by that surface, divided by dielectricity of free space (the vacuum permittivity).

$$\nabla \cdot \mathbf {E} ={\frac {\rho }{\varepsilon _{0}}}$$


Gauss's law for magnetism

Gauss's law for magnetism states that there are no "magnetic charges" (also called magnetic monopoles), analogous to electric charges. Instead, the magnetic field due to materials is generated by a configuration called a dipole, and the net outflow of the magnetic field through any closed surface is zero. Magnetic dipoles are best represented as loops of current but resemble positive and negative 'magnetic charges', inseparably bound together, having no net 'magnetic charge'. Equivalent technical statements are that the sum total magnetic flux through any Gaussian surface is zero, or that the magnetic field is a solenoidal vector field.

$$\nabla \cdot \mathbf {B} =0$$


Faraday's law

The Maxwell–Faraday version of Faraday's law of induction describes how a time varying magnetic field creates ("induces") an electric field. In integral form, it states that the work per unit charge required to move a charge around a closed loop equals the rate of change of the magnetic flux through the enclosed surface.

The electromagnetic induction is the operating principle behind many electric generators: for example, a rotating bar magnet creates a changing magnetic field, which in turn generates an electric field in a nearby wire.

$$\nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}$$


Ampère's law with Maxwell's addition

Magnetic core memory (1954) is an application of Ampère's law. Each core stores one bit of data. Ampère's law with Maxwell's addition states that magnetic fields can be generated in two ways: by electric current (this was the original "Ampère's law") and by changing electric fields (this was "Maxwell's addition", which he called displacement current). In integral form, the magnetic field induced around any closed loop is proportional to the electric current plus displacement current (proportional to the rate of change of electric flux) through the enclosed surface.

Maxwell's addition to Ampère's law is particularly important: it makes the set of equations mathematically consistent for non static fields, without changing the laws of Ampere and Gauss for static fields. However, as a consequence, it predicts that a changing magnetic field induces an electric field and vice versa. Therefore, these equations allow self-sustaining "electromagnetic waves" to travel through empty space (see electromagnetic wave equation).

The speed calculated for electromagnetic waves, which could be predicted from experiments on charges and currents, matches the speed of light; indeed, light is one form of electromagnetic radiation (as are X-rays, radio waves, and others). Maxwell understood the connection between electromagnetic waves and light in 1861, thereby unifying the theories of electromagnetism and optics.

$$\nabla \times \mathbf {B} =\mu _{0}\left(\mathbf {J} +\varepsilon _{0}{\frac {\partial \mathbf {E} }{\partial t}}\right)$$